Trovare rapidamente delle risposte nel vasto mare dei big data è sempre più importamte. Se esistono sistemi di deep learning capaci di apprendere compiti specifici a partire dall’analisi dei dati disponibili, fino ad oggi descrivere questi complessi meccanismi matematici, individuandone i singoli componenti, non era affatto semplice. Quello che manca è la matematica dei big data.
Un gruppo tutto italiano di ricercatori ha realizzato uno studio, appena pubblicato su Nature Machine Intelligence, che punta a cambiare le cose grazie ad un nuovo modello scientifico che apre la strada allo studio delle macchine matematiche pensate per esplorare i big data e al loro utilizzo per creare sistemi artificiali intelligenti.
“Abbiamo messo a punto una nuova teoria matematica grazie alla quale è possibile arrivare ad estrarre le informazioni più importanti a partire dal grande universo di quelle disponibili”, conferma Patrizio Frosini, professore associato al Dipartimento di Matematica dell’Università di Bologna che ha collaborato allo studio.
Nato nel campo della topologia computazionale – un’area di ricerca che unisce matematica e informatica – lo studio presenta un modello scientifico in grado di descrivere come il mondo dei dati viene filtrato e trasformato.
“Gli elementi fondamentali di questo modello – dice ancora Frosini – sono macchine che trasformano le informazioni, chiamate ‘operatori’, che possono essere combinate in reti molto complesse. Studiare le proprietà di questi operatori ci permette di comprendere meglio il loro funzionamento e rendere quindi più efficienti i sistemi di elaborazione dei dati.”
Il modello messo a punto dai ricercatori offre allora suggerimenti preziosi per arrivare a costruire sistemi intelligenti capaci di risolvere problemi complessi grazie all’analisi dei big data.
“Questi sistemi – spiega Patrizio Frosini – sono in grado di produrre sintesi significative di grandi basi di dati e si spera possano in futuro arrivare a riconoscere somiglianze tra due forme con la stessa abilità di un essere umano: una capacità che potrebbe essere applicata, ad esempio, per interpretare in modo corretto i sintomi di una malattia.”
Lo studio è stato pubblicato su Nature Machine Intelligence con il titolo Towards a topological-geometrical theory of group equivariant non-expansive operators for data analysis and machine learning. Per l’Università di Bologna hanno partecipato Patrizio Frosini e Nicola Quercioli, entrambi afferenti al Dipartimento di Matematica. Hanno partecipato inoltre Mattia G. Bergomi (Champalimaud Centre for the Unknown, Portogallo) e Daniela Giorgi (CNR – Istituto di scienza e tecnologie dell’informazione “Alessandro Faedo”).
I risultati teorici descritti nell’articolo sono stati ottenuti all’interno della linea di ricerca Mathematical Foundations of Topological Data Analysis presso ARCES – Advanced Research Center on Electronic Systems “Ercole De Castro”, centro di ricerca dell’Università di Bologna.